skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mølmer, Klaus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the interaction of weak light fields with two-dimensional lattices of atoms with high lying atomic Rydberg states. This system features different interactions that act on disparate length scales, from zero-range defect scattering of atomic excitations and finite-range dipole exchange processes to long-range Rydberg-state interactions, which span the entire array and can block multiple Rydberg excitations. Analyzing their interplay, we identify conditions that yield a nonlinear quantum mirror which coherently splits incident fields into correlated photon-pairs in a single transverse mode, while transmitting single photons unaffected. In particular, we find strong anti-bunching of the transmitted light with equal-time pair correlations that decrease exponentially with an increasing range of the Rydberg blockade. Such strong photon-photon interactions in the absence of photon losses open up promising avenues for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons. 
    more » « less